Каталог книг
- Инфокоммуникации
- Безопасность
- Транспорт
- Инженерное образование и общетехнические дисциплины
- » Математика
- » Физика
- » Химия
- » Электротехника, энергетика, энергосбережение
- » Инженерная графика. Машиностроительное черчение. САПР в машиностроении
- » Метрология и измерительная техника. Управление качеством
- » Теория систем и системный анализ
- » Высшее образование. Аспирантура. Докторантура. Технологии образования
- » Наука в целом. Науковедение. Научно-техническая информация (НТИ)
- » Строительство. Архитектура
- » Приборостроение, машиностроение
- » Пищевая промышленность
- » Лесная промышленность
- » Экология и природопользование
- Экономика. Управление. Бизнес
- Медицина и биомедицинская техника
- Общественные науки
- Литературно-художественные издания
- Искусство, коллекционирование, хобби, спорт
Ученые МТУСИ разработали нейросетевую модель распознавания голосовых команд для системы управления роботом-манипулятором
31 октября 2023Взаимодействие человека с роботом-манипулятором все чаще входит в практику работы в пищевой промышленности и медицине. По словам ученых, для такой работы целесообразно по максимуму использовать возможности нейросетевой модели для распознавания и классификации голосовых команд.
Благодаря перебору параметров нейронной сети, учеными МТУСИ определена наиболее результативная архитектура, состоящая из пяти скрытых (8, 16, 32, 64, 128 нейронов) и двух полносвязных слоев (256 и 128 нейронов). Представленная архитектура обеспечивает точность распознавания команд 87.17% на тестовом наборе.
В ходе обучения нейронной сети использована часть набора данных от компании Google, включающая 64 728 аудиофайлов, содержащих записи одной из 30 команд на английском языке, 12 из которых могут быть использованы в системе управления роботом-манипулятором.
«В рамках дальнейшей работы планируется собрать собственный набор данных, состоящий из команд для робота-манипулятора на русском языке, попробовать увеличить точность распознавания команд до 95% и осуществить передачу исполнительной команды непосредственно роботу-манипулятору», — рассказал Данил Подпалый, магистрант МТУСИ.
Разработанная модель распознавания голосовых команд может использоваться при проектировании и разработке системы управления промышленным роботом-манипулятором на базе голосового управления либо при разработке полноценной диалоговой системы для коллаборативной работы человека и робота-манипулятора.
Ученые из МТУСИ выразили уверенность в том, что ещё более широкое внедрение нейросетевой модели распознавания голосовых команд позволит предприятиям выйти на новый уровень выполнения задач, увеличить эффективность работы и перераспределить обязанности между устройствами и людьми.
Вернуться к списку новостей